MacKays to Peka Peka Expressway (M2PP) Project

A Case Study

By Jamil Khan

Accelerated Bridge Construction in Seismic Areas: design detail of bridge piers
M2PP Expressway Project

Project Background

- 18km Long section of Expressway
- 17 Bridges to cross
 - Local roads
 - Expressway
 - Waterways

The Route
M2PP Expressway Project

Project Background

- Overpass Bridges (3)
- Underpass Bridges (2)
- Drain Bridge (1)
- Stream Bridges (3)
M2PP Expressway Project

Project Background

- 2 Span Overpass Bridges (2)
- 3 Span Overpass Bridges (2)
- 5 Span River Bridge (1)
- 5 Span Overpass Bridge (1)
M2PP Expressway Project

Project Background
M2PP Expressway Project

Challenging Environment

Ground Conditions

- The Expressway passes through Sand dunes and low lying inter-dunal deposits
- Peat deposits are present along alignment
 - Peat is very soft soil with very high organic content & highly compressible. These deposits are typically 0.5m to 6m thick
- Liquefiable loose sand and silt layers below GWT
- Founding layer of dense gravel sand for piles is about 20 ~30m below GL
Critical faults around the site:

- Ohariu Fault
 - Estimated MCE of M7.2
 - Return period – 2000 yrs
 - 1km from Peka Peka Bridge
 - 3km from Poplar Avenue Bridge

- Wairarapa Fault
 - Estimated MCE of M8.2
 - Return period - 1200 yrs
 - 27km from Poplar Ave Bridge
 - 30km from Waikanae River Bridge
M2PP Expressway Project

Challenging Environment (Cont)

Seismicity of the Area (cont.)

Comparison of Response Spectra

- Christchurch 1/2500yr
- M2PP 1/2500yr (liquefied)
- M2PP 1/2500yr (Near fault effects)
- M2PP 1/100yr event
- Auckland 1/2500yr event

Spectral Acceleration (g) vs. Displacement (mm)
M2PP Expressway Project

Multi-span Bridge Form

- Bridge Beams (Super T / SHC)
 - Installed as simply supported
 - Connected together via
 - Transverse post-tensioning (SHC beams)
 - Concrete topping slab (super T beams)

- Bridge Deck
 - Longitudinal direction - Bridge deck will slide over the abutments
 - Transverse direction - Deck will be restrained by shear keys

- Bridge Piers
 - Single or twin column, with precast crosshead beams
 - Supported by oversized large diameter bored piles
 - Resist total longitudinal inertia deck loads and
 - Share transverse seismic deck effects with abutments

- Bridge Abutments
 - The abutments are cast-in-situ concrete
 - Supported on steel H-piles
 - Resist only transvers seismic inertia loads of bridge deck.
M2PP Expressway Project

Accelerated Bridge Construction

- In the design and construction of M2PP multi-span bridges, a number of “Accelerated Bridge Construction” techniques adopted by following the principals of ABC
 - Use standard elements repeatedly
 - 2 column type, 1.5m and 2.1m
 - 2 Bored Pile size 2.1m and 3m
 - 2 type of piers
 - 3 types of crosshead beams
 - 2 types of beams, Super T and SHC
 - Eliminate an element or operation if possible to reduce the number of elements / operations
 - Pier supported on large dia mono pile, no pilecap
 - Column cage plunged on pile top, no 2nd stage pour
M2PP Expressway Project

Accelerated Bridge Construction

- Decouple or remove the dependency of elements on each other
 - Prefabrication of column and pile cage
 - Post-tension connection of column & crosshead
 - A short land span to separate MSE Walls and Abutment, so MSE wall can be constructed independently.

- Off-site pre-casting and prefabrication of reinforcement cage to improve the quality
 - Prefabrication of column & pile cage, abutment pile caps cage
 - Pre-cast bridge beams, crosshead beams, facia panels, facing panels, land span slabs etc

- Minimise confined space working at site
- Minimise working at height
M2PP Expressway Project

Multi-span Bridge Piers

- In an urban environment, piers are designed to:
 - Be aesthetically appealing
 - Occupy less space
 - Provide more light & room underneath bridge

- Types of pier adopted are:
 - Hammerhead pier (for 3 and more spans bridges)
 - Portal frame pier (for 2 span bridges)

- The components of piers are:
 - Monopile continuous with pier column
 - Pier column
 - Crosshead beam
 - Pier column & cross-head beam connection
 - Pier & deck linkage connection
M2PP Expressway Project

Bridge Piers Design

- Design economy was achieved
 - Allowing the hinges in piles at depth
 - Both the pile yield, and column yield produce a plastic mechanism that has the strength and displacement capacity to achieve the seismic demands.
 - The different mechanisms form depending on the soils characteristics (upper bound vs lower bound etc.)
 - Columns are designed for:
 - Flexural demands and not for over-strength flexure capacity of piles
 - Over-strength shear due to Plastic Hinges in piles or columns
M2PP Expressway Project

Bridge Piers Design

- Potential Plastic Hinges (PH)
 - Ranges of soils used for all possible PH locations
 - Potential plastic hinges' that they occur either:
 1. At the base of the column when upper bound soil conditions are considered.
 2. At a range of depths (5m-12m) when lower bound conditions considered depending on shadowing effect etc
 - Plastic hinge region is designed for Over-strength shear.
M2PP Expressway Project

Bridge Piers Column Design

- The piers column are:
 - Octagonal shape at base
 - Followed by an architectural shape
 - Elongated hexagonal shape
 - Gradually change to rectangular at top.

- The piers column cage designed as:
 - Main structural steel cage
 - Secondary steel cage

- Main structural steel cage
 - Core cage detailed as circular shape
 - Provides flexibility and tolerance

- Secondary steel cage
 - Follows the architectural shape
 - Tie to main structural steel cage
M2PP Expressway Project

Bridge Piers Foundation Design

- Monopile continuous with pier
 - provides efficient support to piers
 - gives significant efficiencies in design and construction.

- Pier supported on large dia mono pile:
 - No pile cap

- Large diameter bored piles used
 - 3m dia piles for Hammered head pier
 - 2.1m dia piles for Portal frame pier

- We believe this is the 1st use of 3mφ bored pile in New Zealand.
M2PP Expressway Project

Pier Supported by Oversize Pile Shaft

- Two types of possible failure
 - The bars pull-out of the pile.
 - Pier pull-out of the pile.

- The horizontal forces due to prying action
 - Surrounding concrete
 - Transverse reinforcement.

- No guidance in NZ Standards

- AASHTO Bridge Design Code Adopted
 - Precast Bent System for High Seismic Regions
M2PP Expressway Project

Pier & Piles Detailing (Use of DH40 Bar Hoops)

- The top of pile shaft is designed for
 - Over-strength shear demands
 - Confinement demands
 - Horizontal force demands
 - Prying action of pier supported on an oversize pile shaft

- This led team to use
 - DH40 bars in bundle for longitudinal pile reinforcement (106 bars)
 - DH40 bars as hoop reinforcement

- We believe this is the first use of HD40 bars as hoops in New Zealand.
- Pile cage weights 60 tonnes
- Constructed 32 No piles safely & efficiently
M2PP Expressway Project

Bridge Piers and Pile Connection Design

- Column cage prefabricated
- 16T column cage plunged into the top of pile concrete

Advantages of this innovation are:
 - No pile cap
 - No 2nd stage concreting
 - No confined space working
 - Saving the project over $6M and 120 days.
 - Produced high quality piles and pile-column interface connections
M2PP Expressway Project

Crosshead Beam

- Inverted T cantilever reinforced concrete pre-cast beams
- Designed to remain elastic under all loading cases;
 - Operational loading
 - Construction loading and
 - Imbalance of live loads.
- Design for critical load cases was undertaken to NZS3101:2006 for flexure, shear and torsion at both SLS and ULS.
Corbel SLS design was undertaken using:
- The strut and tie methodology from BD21/01
- The ULS Design was undertaken to AS 5100.5-2004 Appendix D2.

The shear keys at each end of the crosshead are designed:
- For loading derived from transverse overstrength actions of the pier column.
- using strut and tie theory from Appendix A of NZS3101:2006
- Bearing stresses were assessed to section 16.3 of NZS3101:2006.
Colum - Crosshead Connection

- A Post-tension connection
- 6-56mm dia threaded stress bars was developed
 - To reduce joint congestions
 - To increase construction speed
- The steel anchorage plates with screwed threaded stress bars were cast into the column.
- The crosshead was then lowered over the column with the stress bars passing through oversize ducts, and then stressing was performed.
M2PP Expressway Project
Column - Crosshead Connection

- The PT connection was designed to remain elastic under all load cases.
- The design ULS load case results from seismic inertia generated by overstrength of the pier column.
- The SLS design actions were derived from traffic out of balance loads.
- Losses due to creep and shrinkage were accounted for in accordance to NZS3101:2006 Cl19.3.4.
- Shear transfer at the column-crosshead interface was carried through shear-friction to NZS3101:2006 Cl7.7.
M2PP Expressway Project

Colum - Crosshead Connection

- This allowed rapid erection of the crossheads and prove to be the most cost effective solution.
M2PP Expressway Project

Linkage Reinforcement

- To restrain the bridge spans in the event of an earthquake.
M2PP Expressway Project

Linkage Reinforcement

- Conventional Linkage Bars
 - The linkage will yield extensively under the combined ULS action.

Conventional Linkage Actions

Additional Actions
- Geometric Elongation
- Bending of linkages

Potential Localised Yielding

Delta Geo, Vert

Delta Geo, Hrz
M2PP Expressway Project

Linkage Reinforcement

- **Linkage Strands Alternative**
 - 15.2mm strands individually sheathed in a HDPE duct
 - Use of strand reduced flexural stresses in the linkage to a negligible value
 - Debonding increased significantly to control the strains in the linkages that develop due to geometric elongation
 - The strands are flexible enough to accommodate the rotations and axial extension without yielding/failing (both ULS and MCE).
M2PP Expressway Project

Bridge Beams

- Pre-cast pre-tension Bridge Beams
 - 650 / 900 Single Hollow Core Beam
 - 1225 / 1825 Super T Beams
- Designed as partially pre-stress elements
- 1825mm Super T beam
 - Beam length 38m
 - Beam weight 88T
 - 56 numbers of 15.2mm strands
 - Jacking force 75% of Pu
M2PP Expressway Project

New Zealand’s First 1825 Super T Bridge Beam

Kiwis can do

Even PM John Key and MP Nathan Guy were impressed!

Accelerated Bridge Construction in Seismic Areas: design detail of bridge piers
M2PP Expressway Project

Expansion Joints

- The key considerations for an appropriate joint are:
 - Initial cost
 - Long term durability
 - Design performance

- NZTA has a strong preference for single seal joints

- In past single seal joints have provided very good long term services.

- A risk based approach adopted to gain the benefit of single seal joints.
 - List the efficiencies in construction and maintenance
 - Highlight the compromise in the design requirements.
 - List the possible risks for the Agency
 - Request for departures from Bridge Manual
M2PP Expressway Project

Expansion Joints, Departures from BM

- The maximum width of opening < 85mm
 - \(\Delta_{TP} + \Delta_{SG} + \Delta_{GAP} < 85\text{mm} \)
- Minor EQ return factor for expansion joints is \(R_s = 0.39 \)
 - \(R_s = \frac{R_u}{4.23} \), compare to \(\frac{R_u}{4} \) as suggested in BM 3rd Ed.

<table>
<thead>
<tr>
<th>Bridge</th>
<th>Joint Type</th>
<th>Rs</th>
<th>SLS2 Event (AEP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waikanae River Bridge</td>
<td>Multi seal</td>
<td>0.50</td>
<td>1/100</td>
</tr>
<tr>
<td>Raumati Road Bridge</td>
<td>Multi seal</td>
<td>0.50</td>
<td>1/100</td>
</tr>
<tr>
<td>Poplar Ave Bridge</td>
<td>Single seal</td>
<td>0.50</td>
<td>1/100</td>
</tr>
<tr>
<td>Peka Peka Road Bridge</td>
<td>Single seal</td>
<td>0.50</td>
<td>1/100</td>
</tr>
<tr>
<td>Kapiti Road Bridge</td>
<td>Single seal</td>
<td>0.42</td>
<td>1/60</td>
</tr>
<tr>
<td>Wharemauku Stream Bridge</td>
<td>Single seal</td>
<td>0.40</td>
<td>1/55</td>
</tr>
<tr>
<td>Te Moana Road Bridge</td>
<td>Single seal</td>
<td>0.39</td>
<td>1/45</td>
</tr>
</tbody>
</table>
M2PP Expressway Project

Accelerated Bridge Construction in Seismic Areas: design detail of bridge piers
M2PP Expressway Project

Conclusions

- The high seismicity, challenging soil conditions and urban environment presented unique challenges to the Alliance team
- A number of Accelerated Bridge Construction (ABC) techniques has been adopted:
 - To improve construction efficiencies
 - To make the safe working environment
 - To achieve the good quality product.
- Displacement-based methods allowed for structures to be designed to more realistic levels of performance.
- Collaboration between designers and constructors enabled the use of a number of Accelerated Bridge Construction techniques for the multi-span bridges design.
- Innovation happens when the client, designers and constructors collaborate to put existing concepts together in a new way.
- By pushing to find ABC solutions in the design and construction of M2PP bridges, we have achieved significant construction efficiencies and savings.
M2PP Expressway Project

Acknowledgement

- The author would like to acknowledge the numerous and continuing contributions of the his designer colleagues Geoff Brown, Andrew Dickson, Ronald Wessel, Anton Kivell and the constructor colleagues Matt Zame, Ian Stockdale, Tim Pervan, Amit Chaudhary, Dave Hoffman and many others in the development and implementation of these ABC Techniques which formed the basis for the design of the M2PP Bridges.

- The author would also like to acknowledge the contributions of other Alliance partners and suppliers in the development and implementation of the Accelerated Bridge Construction approaches taken on this project.