2.3 Traditional mesh slabs

Andrew Dallas
Technical Manager and Director
Conslab Ltd.
Traditional Mesh Slabs

• Traditional mesh slabs are essentially unreinforced when it comes to structural design.
• Top Mesh is in for shrinkage control purposes
• Or you can undertake a mesh design with mesh in the bottom of the slab which does add to the structural strength See TR34
• Shrinkage control is handled by sawcuts at 5-6m centres.
 – These will open by 1-2mm as the joint opens under shrinkage
 – The reinforcement yields as the panels shrink
 – Load transfer is handled by the reinforcement and aggregate interlock
 – Reducing the steel at joints risks wide joint openings and loss of load carrying capability.
 • Eg cutting every 2nd bar!
 – If they stay tight then can take wheel action without damage. Except hard wheels.
• Saw cuts are generally cut as soon as possible 3-4mm wide.
• Cut 25-30% of the slab depth
 – Less and increase risk of crack occurring elsewhere. More and reduce agg interlock.
• If hard neoprene wheels crossing or containers being pushed and moved then will need to be sealed.
 – Initially with a flexible sealant and then again at roughly 18 months with a semi flexible sealant.
• Do not use crack inducers.
 – They do work in creating cracks but produce a ragged arriss which cannot easily be sealed.
 – May work before the sawcut is cut leaving a ragged crack parallel with the crack which will then fail.
• Free Movement Joints.
 – The mesh can only carry the load across the sawcuts for so far and then you require a free movement joint.
TYPE G

Steel Joint Edging (50 x 10)
Deformed Anchors

Steel Form

Steel Support Brackets at 3m crs

Temporary tack weld
sliding plate
anchors

50 x 50 x 6mm angle with blind holes.

Diamond Dowels
sheetmetal
support strap

TYPE G ©2003

TYPE P ©2003
- Free joint spacing

<table>
<thead>
<tr>
<th>Steel</th>
<th>Steel mm2 Area</th>
<th>Slab thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>665</td>
<td>145</td>
<td>26</td>
</tr>
<tr>
<td>664</td>
<td>186</td>
<td>33</td>
</tr>
<tr>
<td>663</td>
<td>205</td>
<td>37</td>
</tr>
<tr>
<td>662</td>
<td>260</td>
<td>37</td>
</tr>
<tr>
<td>661</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>661/0</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>H12 diam at 250mm</td>
<td>452</td>
<td></td>
</tr>
<tr>
<td>H12 diam at 225mm</td>
<td>503</td>
<td></td>
</tr>
</tbody>
</table>

For mesh Fly = 485 mPa; for H12 = 430 mPa
Specification and design of commercial concrete slabs on grade

The NZ Concrete Society acknowledges the support of the following organisations for making this seminar series possible:

Presenters

Andrew Dallas
Conslab Ltd

Rhys Rogers
BBR Contech

Alan Ross
BOSFA